To Obtain an Expression for the Instantaneous Circulating Current

- v_{O1} = Instantaneous o/p voltage of converter 1.
- v_{02} = Instantaneous o/p voltage of converter 2.
- The circulating current i_r can be determined by integrating the instantaneous voltage difference (which is the voltage drop across the circulating current reactor L_r), starting from $\omega t = (2\pi \alpha_1)$.
- As the two average output voltages during the interval $\omega t = (\pi + \alpha_1)$ to $(2\pi \alpha_1)$ are equal and opposite their contribution to the instantaneous circulating current i_r is zero.

$$i_{r} = \frac{1}{\omega L_{r}} \left[\int_{(2\pi - \alpha_{1})}^{\omega t} v_{r} . d(\omega t) \right]; \quad v_{r} = (v_{O1} - v_{O2})$$

As the o/p voltage v_{o2} is negative

$$v_r = \left(v_{O1} + v_{O2}\right)$$

$$i_r = \frac{1}{\omega L_r} \left[\int_{(2\pi - \alpha_1)}^{\omega t} (v_{O1} + v_{O2}) . d(\omega t) \right];$$

$$v_{O1} = -V_m \sin \omega t$$
 for $(2\pi - \alpha_1)$ to ωt

$$i_{r} = \frac{V_{m}}{\omega L_{r}} \left[\int_{(2\pi - \alpha_{1})}^{\omega t} -\sin \omega t.d(\omega t) - \int_{(2\pi - \alpha_{1})}^{\omega t} \sin \omega t.d(\omega t) \right]$$

$$i_r = \frac{2V_m}{\omega L_r} (\cos \omega t - \cos \alpha_1)$$

The instantaneous value of the circulating current depends on the delay angle.

For trigger angle (delay angle) $\alpha_1 = 0$, the magnitude of circulating current becomes min. when $\omega t = n\pi$, $n = 0, 2, 4, \dots$ & magnitude becomes max. when $\omega t = n\pi$, $n = 1, 3, 5, \dots$ If the peak load current is I_p , one of the converters that controls the power flow may carry a peak current of

$$\left(I_p + \frac{4V_m}{\omega L_r}\right),\,$$

where

$$I_p = I_{L(\max)} = \frac{V_m}{R_L},$$

&

$$i_{r(\text{max})} = \frac{4V_m}{\omega L_r} = \text{max. circulating current}$$

The Dual Converter Can Be Operated In Two Different Modes Of Operation

- Non-circulating current (circulating current free) mode of operation.
- Circulating current mode of operation.

Non-Circulating Current Mode of Operation

- In this mode only one converter is operated at a time.
- When converter 1 is ON, $0 < \alpha_1 < 90^\circ$
- V_{dc} is positive and I_{dc} is positive.
- When converter 2 is ON, $0 < \alpha_2 < 90^\circ$
- V_{dc} is negative and I_{dc} is negative.

Circulating Current Mode Of Operation

- In this mode, both the converters are switched
 ON and operated at the same time.
- The trigger angles α_1 and α_2 are adjusted such that $(\alpha_1 + \alpha_2) = 180^\circ$; $\alpha_2 = (180^\circ \alpha_1)$.

- When $0 < \alpha_1 < 90^{\circ}$, converter 1 operates as a controlled rectifier and converter 2 operates as an inverter with $90^{\circ} < \alpha_2 < 180^{\circ}$.
- In this case V_{dc} and I_{dc} , both are positive.
- When 90° < $\alpha 1$ < 180° , converter 1 operates as an Inverter and converter 2 operated as a controlled rectifier by adjusting its trigger angle α_2 such that $0 < \alpha_2 < 90^{\circ}$.
- In this case V_{dc} and I_{dc} , both are negative.